9x-3/7=5x^2+8x-4

Simple and best practice solution for 9x-3/7=5x^2+8x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x-3/7=5x^2+8x-4 equation:



9x-3/7=5x^2+8x-4
We move all terms to the left:
9x-3/7-(5x^2+8x-4)=0
We get rid of parentheses
-5x^2+9x-8x+4-3/7=0
We multiply all the terms by the denominator
-5x^2*7+9x*7-8x*7-3+4*7=0
We add all the numbers together, and all the variables
-5x^2*7+9x*7-8x*7+25=0
Wy multiply elements
-35x^2+63x-56x+25=0
We add all the numbers together, and all the variables
-35x^2+7x+25=0
a = -35; b = 7; c = +25;
Δ = b2-4ac
Δ = 72-4·(-35)·25
Δ = 3549
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3549}=\sqrt{169*21}=\sqrt{169}*\sqrt{21}=13\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13\sqrt{21}}{2*-35}=\frac{-7-13\sqrt{21}}{-70} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13\sqrt{21}}{2*-35}=\frac{-7+13\sqrt{21}}{-70} $

See similar equations:

| 3t+2(t-1)/3=4 | | 3x+36=12x+8 | | x^+12x-7=0 | | 5k-(6k-18)=9-k=17 | | 6+5(8+3m)=166 | | 20v+14=80 | | 8(8x-3)=17 | | 8n-4n=14 | | x+7(0)=21 | | 3u/8=-15 | | 1/4(n+5)=10 | | 4n+2=-2n+16 | | 68=(1)/(5)(20x+50)+2 | | 11x+12=8x+-9 | | 72/3/4=x | | 1.8-3.6x=-24x+12 | | 3/4(48-6)=4(4+2x) | | 3(3x+1)=-12x-6 | | X-3+2x-3=180 | | X/3=(x+4)/5 | | 245+130+y=506 | | 30*8.75+11x=400 | | 30x8.75+11x=400 | | 3(3x+1)=2(6x+3) | | 2y+4=4y+4 | | 374/x-10=-22 | | a÷18=7a | | 23+x=6 | | w+85=108 | | 6x+4(2x+11)=42 | | -3=2+d/11 | | 6t(2t+1)-9=t-(t+2) |

Equations solver categories